728x90
๋ฐ˜์‘ํ˜•

Bayes' Theorem 1

[ ์˜๋ฃŒ์˜์ƒ ] Medical Image Segmentation (4.Graph Cut Method)

MOOC ๊ฐ•์ขŒ '์ปดํ“จํ„ฐ๋น„์ „, ๋จธ์‹ ๋Ÿฌ๋‹, ๋”ฅ๋Ÿฌ๋‹์„ ์ด์šฉํ•œ ์˜๋ฃŒ์˜์ƒ๋ถ„์„' ๊ฐ•์˜๋ฅผ ๋ฆฌ๋ทฐ ๋ฐ ์ •๋ฆฌํ•œ ๊ฒŒ์‹œ๋ฌผ์ž…๋‹ˆ๋‹ค. Graph Cut Method๋ฅผ ์ด์šฉํ•˜์—ฌ Segmentation Task๋ฅผ ์ง„ํ–‰ํ•  ๋•Œ๋Š” ์ด๋ฏธ์ง€๋ฅผ Graph Model๋กœ ์ •์˜ํ•˜๊ณ , Graph์˜ Label์„ ์ •์˜ํ•˜๋Š” ๋ฌธ์ œ๋กœ ์ƒ๊ฐํ•œ๋‹ค. ์šฐ์ธก ์ด๋ฏธ์ง€์˜ ๊ฒ€์€์ƒ‰์ด background, ํฐ์ƒ‰์ด foreground๋ผ๊ณ  ๊ฐ€์ •ํ•œ๋‹ค. Graph Model์—์„œ๋Š” ๊ด€์ฐฐ๋œ ์˜์ƒ์˜ color ๊ฐ’์„ obsevation์ด๋ผ ํ•œ๋‹ค. ํ‘ธ๋ฅธ์ƒ‰๊ณผ ๋ณด๋ผ์ƒ‰์„ ๋”ฐ๋กœ ๋ถ„ํ• ํ•œ๋‹ค๊ณ  ํ•˜๋ฉด ํ‘ธ๋ฅธ์ƒ‰์„ 0, ๋ณด๋ผ์ƒ‰์„ 1์ด๋ผ๊ณ  ์ง€์ •ํ•ด์•ผ ํ•œ๋‹ค. (Labeling) ํ•ด๋‹น ์ด๋ฏธ์ง€๋ฅผ ๊ทธ๋ž˜ํ”„ํ™” ํ•œ ๊ทธ๋ฆผ์ด ์šฐ์ธก ๊ทธ๋ฆผ์˜ ์ƒ๋‹จ๋ถ€์ด๊ณ , ์šฐ๋ฆฌ๊ฐ€ ๊ตฌํ•˜๊ณ  ์‹ถ์€ ๊ฒƒ์€ X๊ฐ’๋“ค์ด๋‹ค. ์ด๋Š” P(X1 ~ X9ใ…ฃZ1 ~ Z9) ๋ผ๋Š” ..

728x90
๋ฐ˜์‘ํ˜•